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Peroxyacetyl radical (PA) is one of the most abundant peroxy radicals in the troposphere. As a precursor of the pollutant peroxyacetyl nitrate (PAN), it contributes
to tropospheric ozone and photochemical smog production. Monitoring fleeting species like PA in the laboratory is still a challenge for experimentalists.
Consequently, computational work plays an important role in the study of these compounds, providing a means to interpret spectra and model reactivity. Employing
coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] with an ANOO atomic natural orbital basis set, we determined the
optimized structures of PA’s cis and trans conformers on the ground and excited state surface. Our results resolve a discrepancy in the literature by showing that,
upon excitation, the trans conformer prefers an asymmetric (C;1) conformation over its original Cg-symmetric structure. All equilibrium and saddle-point structures
are identified as such by harmonic vibrational analysis. We found that the cis conformer is lower in energy in the ground state by 0.75 kcal ~! that the trans one,
while in the excited state, the trans structure is lower in energy by 1.66 kcal ~! that cis. We determined the barrier to the rotation from trans to cis to be 5.85 kcal
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We computed optimized geometries with CFOUR, software using coupled cluster theory with single, double, and perturbative triple excitations CCSD(T) with an Schuurman, M. S.; Muir, S. R.: Allen, W. D.; Schaefer, H. F. J. Chem. Phys., 2004, 120, 11586-11599
ANOO atomic natural orbital basis set. UHF reference was employed for the computations because analytic gradients cannot be easily computed using ROHF Orlando, J. et al. Chem. Soc. Rev. 2012, 41, 6294-6317
reference. In addition, (S2) was determined to be less than 0.77 h%. We then performed a harmonic frequency analysis which confirmed the optimized structures to Sharp, E. N. et al. Phys. Chem. Chem. Phys. 2008, 10, 3955-3981
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correspond to the correct equilibrium geometries on the potential energy surface. We confirmed the transition state to be a a saddle point on the potential energy
surface. The transition state was then connected to the cis and ¢rans equilibrium structures by stepping along the intrinsic reaction coordinate in GAMESS software.
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